成功人士的创业故事_母爱的作文|北京军海癫痫医院
北京军海癫痫医院

您现在的位置: 首页 > 经典语句 > 正文内容

勾股定理教案(精选3篇)

来源:情文学小说网   时间: 2021-02-21

勾股定理教案(精选3篇)

  作为一位无私奉献的人民教师,有必要进行细致的教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。怎样写教案才更能起到其作用呢?以下是小编整理的勾股定理教案(精选3篇),仅供参考,大家一起来看看吧。

  学习目标

  1、通过拼图,用面积的方法说明勾股定理的正确性。

  2、探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。

  重点难点

  或学习建议学习重点:用面积的方法说明勾股定理的正确。

  学习难点:勾股定理的应用。

  学习过程教师

  二次备课栏

  自学准备与知识导学:

  这是1955年希腊为纪念一位数学家曾经发行的邮票。

  邮票上的图案是根据一个著名的数学定理设计的。

  学习交流与问题研讨:

  1、探索

  问题:分别以图中的直角三角形三边为边向三角形外

  作正方形,小方格的面积看做1,求这三个正方形的面积?

  S正方形BCED=S正方形ACFG=S正方形ABHI=

  发现:

  2、实验

  在下面的方格纸上,任意画几个顶点都在格点上的三角形;并分别以这个三角形的各边为一边向三角形外做正方形并计算出正方形的面积。

  请完成下表:

  S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的关系

  112

  145

  41620

  91625

  发现:

  如何用直角三角形的三边长来表示这个结论?

  这个结论就是我们今天要学习的勾股定理:

  如图:我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”,所以勾股定理可表示为:弦股还可以表示为:或勾

  练习检测与拓展延伸:

  练习1、求下列直角三角形中未知边的长

  练习2、武汉中际癫痫病医院,讲解女性癫痫孕期如何治疗下列各图中所示的线段的长度或正方形的面积为多少。

  (注:下列各图中的三角形均为直角三角形)

  例1、如图,在四边形中,∠,∠,,求。

  检测:

  1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,则c=________;

  (2)b=8,c=17,则S△ABC=________。

  2、在Rt△ABC中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是()

  A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10

  3、若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为()

  A。12cmB。10cmC。8cmD。6cm

  4、要登上8m高的建筑物,为了安全需要,需使梯子底端离建筑物6m,至少需要多长的梯子?(画出示意图)

  5、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4千米处,过了20秒,飞机距离这个男孩5千米,飞机每小时飞行多少千米?

  课后反思或经验总结:

  1、什么叫勾股定理;

  2、什么样的三角形的三边满足勾股定理;

  3、用勾股定理解决一些实际问题。

  重点、难点分析

  本节内容的重点是勾股定理的逆定理及其应用。它可用边的关系判断一个三角形是否为直角三角形。为判断三角形的形状提供了一个有力的依据。

  本节内容的难点是勾股定理的逆定理的应用。在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方。

  教法建议:

  本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法。通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题。在课堂教学中营造轻松、活泼的课堂气氛。通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的。具体说明如下:

  (1)让学生主动提出问题

  利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来。这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容。所有这些都由学生自己完成,估计学生不会感到困难。六安哪家癫痫病医院好这样设计主要是培养学生善于提出问题的习惯及能力。

  (2)让学生自己解决问题

  判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路。

  (3)通过实际问题的解决,培养学生的数学意识。

  教学目标:

  1、知识目标:

  (1)理解并会证明勾股定理的逆定理;

  (2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;

  (3)知道什么叫勾股数,记住一些觉见的勾股数。

  2、能力目标:

  (1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

  (2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力。

  3、情感目标:

  (1)通过自主学习的发展体验获取数学知识的感受;

  (2)通过知识的纵横迁移感受数学的辩证特征。

  教学重点:勾股定理的逆定理及其应用

  教学难点:勾股定理的逆定理及其应用

  教学用具:直尺,微机

  教学方法:以学生为主体的讨论探索法

  教学过程:

  1、新课背景知识复习(投影)

  勾股定理的内容

  文字叙述(投影显示)

  符号表述

  图形(画在黑板上)

  2、逆定理的获得

  (1)让学生用文字语言将上述定理的逆命题表述出来

  (2)学生自己证明

  逆定理:如果三角形的三边长 有下面关系:

  那么这个三角形是直角三角形

  强调说明:(1)勾股定理及其逆定理的区别

  勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理。

  (2)判定直角三角形的方法:

  ①角为 、②垂直、③勾股定理的逆定理

  2、 定理的应用(投影显示题目上)

  例1 如果一个三角形的三边长分别为

  则这三角形是直角三角形

  例2 如图,已知:CD⊥AB于D,且有

  求证:△ACB为直角三角形。

  以上例题,分别由学生先思考,然后回答。师生共辽宁那家医院治疗癫痫同补充完善。(教师做总结)

  4、课堂小结:

  (1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

  (2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。

  5、布置作业:

  a、书面作业P131#9

  b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8

  求证:△DEF是等腰三角形

  教学课题:勾股定理的应用

  教学时间(日期、课时):

  教材分析

  学情分析

  教 学目标:

  能运用勾股定理及直角三角形的判定条件解决实际问题。

  在运用勾股定理解决实际问题的过程中,感受数学的“转化” 思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值。

  教学准备

  《数学学与练》

  集体备课意见和主要参考资料

  页边批注

  教学过程

  一、 新课导入

  本课时的教学内容是勾股定理在实际中的应用。除课本提供的情境外,教学中可以根据实际情况另行设计一些具体情境,也利用课本提供的素材组织数学活动。比如,把课本例2改编为开放式的问题情境:

  一架长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m。如果梯子的顶端下滑0.5m,你认为梯子的底端会发生什么变化?与同学交流 。

  创设学生身边的问题情境,为每一个学生提供探索的空间,有利于发挥学生的主体性;这样的问题学生常常会从自己的生活经验出发,产生不同的思考方法和结论(教学中学生可能的结论有:底端也滑动 0.5m;如果梯子的顶端滑到地面 上,梯子的顶端则滑动8m,估计梯子底端的滑动小于8m,所以梯子的顶端 下滑0.5m,它的`底端的滑动小于0.5m;构造直角三角形,运用勾股定理计算梯子滑动前、后底端到墙的垂直距离的差,得出梯子底端滑动约0.61m的结论等);通过与同学交流,完善各自的想法,有利于学生主动地把实际问题转化为数学问题 ,从中感受用数学的眼光审视客观世界的乐趣 。

  二、新课讲授

  问题一 在上面的北京癫痫医院有几家情境中,如果梯子的顶端下滑 1m,那么梯子的底端滑动多少米?

  组织学生尝试用勾股定理解决问题,对有困难的学生教师给予及时的帮助和指导。

  问题二 从上面所获得的信息中,你对梯子下滑的变化过程有进一步的思考吗?与同学交流。

  设计问题二促使学生能主动积 极地从数学的角度思考实际问题。教学中学生可能会有多种思考、比如,①这个变化过程中,梯子底端滑动的距离总比顶端下滑的距离大;②因为梯子顶端 下滑到地面时,顶端下滑了8m,而底端只滑动4m,所以这个变化过程中,梯子底端滑动的距离不一定比顶端下滑的距离大;③由勾股数可知,当梯子顶端下滑到离地面的垂直距离为6m,即顶端下滑2m时,底端到墙的垂直距离是8m,即底端电滑动2m等。教学中不要把寻找规律作为这个探索活动的目标,应让学生进行充分的交流,使学生逐步学会运用数学的眼光去审视客观世界,从不同的角度去思考问题,获得一些研究问题的经验和方法、

  3、例题教学

  课本的例1是勾股定理的简单应用,教学中可根据教学的实际情况补充一些实际应用问题,把课本习题2.7第4题作为补充例题。通过这个问题的讨论,把“32+b2=c2”看作一个方程,设折断处离地面x尺,依据问题给出的条件就把它转化为熟悉的会解的一元二次方程32+x2=(10―x)2,从中可以让学生感受数学的“转化”思想,进一步了解勾股定理的悠久历史和我国古代人民的聪明才智、

  三、巩固练习

  1、甲、乙两人同时从同一地点出发,甲往东走了4km,乙往南走了6km,这时甲、乙两人相距__________km。

  2、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是( )。

  (A)20cm (B)10cm (C)14cm (D)无法确定

  3、如图,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m。求这块草坪的面积。

  四、小结

  我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角 三角形中的任意两边就可以依据勾股定理求出第三边。从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a2+b2=c2”看成一个方程,只要 依据问题的条件把它转化为我们会解的方程,就把解实际问题转化为解方程。

【勾股定理教案(精选3篇)】相关文章:

1.

2.

3.

4.

5.

6.

7.

8.

上一篇: 叠被子作文

下一篇: 关于教学设计方案3篇

北京军海癫痫医院
武汉癫痫病医院   武汉癫痫病专科医院   治疗癫痫病的医院   癫痫的治疗   治疗癫痫病医院   癫痫病的治疗方法   癫痫病专科医院   武汉中际医院   武汉中际癫痫病医院正规吗   北京癫痫医院   北京癫痫病医院   郑州癫痫病医院   武汉癫痫病医院   武汉治疗癫痫的医院   治疗癫痫的方法   北京癫痫病专科医院   武汉看癫痫病医院   有哪些治疗癫痫的好方法   得了癫痫能治好吗   得了癫痫能治好吗   小儿癫痫病能治愈吗   癫痫病的治疗方法   羊羔疯能治好吗   治疗癫痫的方法有哪些   癫痫病的中医治疗方法   癫痫病的中医治疗方法   癫痫病症状   癫痫病症状   癫痫症的症状都有哪些   怎么才能治好癫痫   怎么才能治好癫痫   癫痫到底能不能治好   癫痫到底能不能治好   儿童癫痫的治疗方法有哪些   癫痫病的治疗方法都有哪些   癫痫症状   西安治疗癫痫病医院   植物网   治疗癫痫病医院   武汉癫痫病专科医院   西安哪家癫痫病医院好   南昌癫痫病医院   西安中际脑病医院怎么样   癫痫病症状   成都癫痫病医院   北京癫痫病医院   武汉癫痫病医院   哈尔滨癫痫病医院   癫痫病能治好吗   湖北癫痫病专科医院   济南癫痫病专科医院   郑州专业的癫痫病医院   郑州哪家癫痫病医院比较好   郑州治疗癫痫病医院哪家好   郑州军海癫痫病医院怎么样   全国治疗癫痫病医院   北京癫痫病医院哪家好   癫痫病怎么治疗   武汉癫痫病专科医院   湖北治疗癫痫病医院在哪   郑州治疗癫痫病医院哪家好   河南癫痫病专科医院   哈尔滨治疗癫痫病费用是多少   黑龙江癫痫病专科医院   陕西癫痫病专科医院   北京癫痫病专科医院  



新华网  人民网  新浪新闻  北京癫痫医院排名  39健康  心里频道  郑州癫痫医院排名